34 research outputs found

    OPA1 isoforms and protein domains in the rescue of mitochondrial dysfunctions

    Get PDF
    Mutations in OPA1 gene have been identified in the majority of patients with Dominant Optic Atrophy (DOA), a blinding disease, and the syndromic form DOA-plus. OPA1 protein is a mitochondrial GTPase involved in various mitochondrial functions, present in humans in eight isoforms, resulting from alternative splicing and proteolytic processing. In this study we have investigated the specific role of each isoform through expression in OPA-/- MEFs, by evaluating their ability to improve the defective mitochondrial phenotypes. All isoforms were able to rescue the energetic efficiency, mitochondrial DNA (mtDNA) content and cristae integrity, but only the presence of both long and short forms could recover the mitochondrial morphology. In order to identify the OPA1 protein domains crucial for its functions, we selected and modified the isoform 1, shown to be one of the most efficient in preserving mitochondrial phenotype, to express three specific OPA1 variants, namely: one with a different N-terminus portion, one unable to generate short form owing to deletion of S1 cleavage site and one with a defective GTPase domain. We demonstrated that the simultaneous presence of the N- and C-terminus of OPA1 was essential for the mtDNA maintenance; a cleavable isoform generating s-forms was necessary to completely rescue the energetic competence and the presence of the C-terminus was sufficient to partially recover the cristae ultrastructure. Lastly, several pathogenic OPA1 mutations were inserted in MEF clones and the biochemical features investigated, to correlate the defective phenotypes with the clinical severity of patients. Our results clearly indicate that this cell model reflects very well the clinical characteristics of the patients, and therefore can be proposed as an useful tool to shed light on the pathomechanism underlying DOA

    Dominant Optic Atrophy (DOA): Modeling the Kaleidoscopic Roles of OPA1 in Mitochondrial Homeostasis

    Get PDF
    In the year 2000, the discovery of OPA1 mutations as causative for dominant optic atrophy (DOA) was pivotal to rapidly expand the field of mitochondrial dynamics and describe the complex machinery governing this pathway, with a multitude of other genes and encoded proteins involved in neurodegenerative disorders of the optic nerve. OPA1 turned out to be a much more complex protein than initially envisaged, connecting multiple pathways beyond its strict role in mitochondrial fusion, such as sensing of OXPHOS needs and mitochondrial DNA maintenance. As a consequence, an increasing need to investigate OPA1 functions at multiple levels has imposed the development of multiple tools and models that are here reviewed. Translational mitochondrial medicine, with the ultimate objective of translating basic science necessary to understand pathogenic mechanisms into therapeutic strategies, requires disease modeling at multiple levels: from the simplest, like in yeast, to cell models, including the increasing use of reprogrammed stem cells (iPSCs) from patients, to animal models. In the present review, we thoroughly examine and provide the state of the art of all these approaches

    Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNALys

    Get PDF
    Background: Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently lim- ited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. Methods: We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carry- ing different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamy- cin treatment. Results: The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-muta- tion load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate- mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). Conclusions: Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF

    Metabolomics hallmarks OPA1 variants correlating with their in-vitro phenotype and predicting clinical severity

    Get PDF
    Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1 12/ 12 MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1 12/ 12 MEFs metabolic signatures and classified OPA1 variants according to their in-vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1 12/ 12 MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in-vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment

    Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models

    Get PDF
    OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA) and the syndromic form DOA “plus”. Over 370 OPA1 mutations have been identified so far, although their pathogenicity is not always clear. We have analyzed one novel and a set of known OPA1 mutations to investigate their impact on protein functions in primary skin fibroblasts and in two “ad hoc” generated cell systems: the MGM1/OPA1 chimera yeast model and the Opa1−/− MEFs model expressing the mutated human OPA1 isoform 1. The yeast model allowed us to confirm the deleterious effects of these mutations and to gain information on their dominance/recessivity. The MEFs model enhanced the phenotypic alteration caused by mutations, nicely correlating with the clinical severity observed in patients, and suggested that the DOA “plus” phenotype could be induced by the combinatorial effect of mitochondrial network fragmentation with variable degrees of mtDNA depletion. Overall, the two models proved to be valuable tools to functionally assess and define the deleterious mechanism and the pathogenicity of novel OPA1 mutations, and useful to testing new therapeutic interventions

    OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions

    Get PDF
    OPA1 is a GTPase that controls mitochondrial fusion, cristae integrity, and mtDNA maintenance. In humans, eight isoforms are expressed as combinations of long and short forms, but it is unclear whether OPA1 functions are associated with specific isoforms and/or domains. To address this, we expressed each of the eight isoforms or different constructs of isoform 1 in Opa1−/− MEFs. We observed that any isoform could restore cristae structure, mtDNA abundance, and energetic efficiency independently of mitochondrial network morphology. Long forms supported mitochondrial fusion; short forms were better able to restore energetic efficiency. The complete rescue of mitochondrial network morphology required a balance of long and short forms of at least two isoforms, as shown by combinatorial isoform silencing and co-expression experiments. Thus, multiple OPA1 isoforms are required for mitochondrial dynamics, while any single isoform can support all other functions. These findings will be useful in designing gene therapies for patients with OPA1 haploinsufficiency

    Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome

    Get PDF
    Wolfram syndrome (WS) is a recessive multisystem disorder defined by the association of diabetes mellitus and optic atrophy, reminiscent of mitochondrial diseases. The role played by mitochondria remains elusive, with contradictory results on the occurrence of mitochondrial dysfunction. We evaluated 13 recessive WS patients by deep clinical phenotyping, including optical coherence tomography (OCT), serum lactic acid at rest and after standardized exercise, brain Magnetic Resonance Imaging, and brain and muscle Magnetic Resonance Spectroscopy (MRS). Finally, we investigated mitochondrial bioenergetics, network morphology, and calcium handling in patient-derived fibroblasts. Our results do not support a primary mitochondrial dysfunction in WS patients, as suggested by MRS studies, OCT pattern of retinal nerve fiber layer loss, and, in fibroblasts, by mitochondrial bioenergetics and network morphology results. However, we clearly found calcium mishandling between endoplasmic reticulum (ER) and mitochondria, which, under specific metabolic conditions of increased energy requirements and in selected tissue or cell types, may turn into a secondary mitochondrial dysfunction. Critically, we showed that Wolframin (WFS1) protein is enriched at mitochondrial-associated ER membranes and that in patient-derived fibroblasts WFS1 protein is completely absent. These findings support a loss-of-function pathogenic mechanism for missense mutations in WFS1, ultimately leading to defective calcium influx within mitochondria

    Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models

    Get PDF
    OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA) and the syndromic form DOA “plus”. Over 370 OPA1 mutations have been identified so far, although their pathogenicity is not always clear. We have analyzed one novel and a set of known OPA1 mutations to investigate their impact on protein functions in primary skin fibroblasts and in two “ad hoc” generated cell systems: the MGM1/OPA1 chimera yeast model and the Opa1−/− MEFs model expressing the mutated human OPA1 isoform 1. The yeast model allowed us to confirm the deleterious effects of these mutations and to gain information on their dominance/recessivity. The MEFs model enhanced the phenotypic alteration caused by mutations, nicely correlating with the clinical severity observed in patients, and suggested that the DOA “plus” phenotype could be induced by the combinatorial effect of mitochondrial network fragmentation with variable degrees of mtDNA depletion. Overall, the two models proved to be valuable tools to functionally assess and define the deleterious mechanism and the pathogenicity of novel OPA1 mutations, and useful to testing new therapeutic interventions

    Pathological mitophagy disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy
    corecore